互联网 频道

腾讯混元开源文生图专用打标模型,支持中英双语打标

  7月4日,腾讯宣布混元文生图打标模型“混元Captioner”正式对外开源。该模型支持中英文双语,针对文生图场景进行专门优化,可帮助开发者快速制作高质量的文生图数据集。

  相比起业界的开源打标模型,混元Captioner模型能更好的理解与表达中文语义,输出的图片描述更为结构化、完整和准确,并能精准识别出常见知名人物与地标。模型还支持开发者自行补充和导入个性化的背景知识。

  面向文生图、支持中英文,提升数据质量

  数据集就像AI训练的教材。训练数据集的质量,影响着模型生成内容的效果。因此,文生图开发者往往需要对原始图片进行清晰、全面的标注,制作高质量的数据集,才能训练出来一个语义理解准确、绘画技艺高超的文生图大模型。

  借助打标模型,开发者可以快速生成高质量数据集。具体来说,文生图开发者将原始图片集导入混元Captioner,后者将生成高质量标注;也可以导入图片与原始描述,利用混元Captioner过滤其中的无关信息,并完善和优化图片描述,以提高数据质量。

  目前,业界对于图片描述文本的生成,主要使用通用多模态Captioner模型,存在描述过于简单或繁琐(与画面描述的无关信息过多)、缺少背景知识导致无法识别知名人物和地标等问题,并且许多模型并非中文原生,中文描述不够精准。

  混元Captioner对图片描述进行结构化与准确度提升

  混元Captioner的背景知识更为完善

  混元Captioner模型针对文生图场景专门进行优化:构建了结构化的图片描述体系;并在模型层面,通过注入人工标注、模型输出、公开数据等多种来源提升Caption描述的完整性;并注入知名文学作品形象、地标、食物、动物、中国元素与知识等大量背景知识,让模型输出的描述更为准确、完整。

  混元Captioner模型构建了结构化的图片描述体系

  众多开发者关注,成最受欢迎国产DiT开源模型

  在对外开源打标模型的同时,腾讯混元文生图大模型(混元DiT)宣布开源小显存版本,仅需6G显存即可运行,对使用个人电脑本地部署的开发者十分友好,该版本与LoRA、ControlNet等插件,都已适配至Diffusers库;并新增对Kohya图形化界面的支持,让开发者可以低门槛地训练个性化LoRA模型;同时,混元DiT模型升级至1.2版本,在图片质感与构图方面均有所提升。

  作为首个中文原生DiT开源模型,混元DiT自全面开源以来,一直持续建设生态。6月,混元DiT发布的专属加速库,可将推理效率进一步提升,生图时间缩短75%;并进一步开源了推理代码;发布LoRA和ControlNet等插件。于此同时,模型易用性大幅提升,用户可以通过Hugging Face Diffusers快讯调用混元DiT模型及其插件,或基于Kohya和ComfyUI等图形化界面训练与使用混元DiT。

  目前,在众多开发者的支持下,混元DiT发布不到2个月,Github Star数已经超过2.6k,成为最受欢迎的国产DiT开源模型。

特别提醒:本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。
0
相关文章